Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 92(2)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26705571

RESUMO

Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity.


Assuntos
Calendula/microbiologia , Matricaria/microbiologia , Fixação de Nitrogênio/fisiologia , Nitrogenase/genética , Oxirredutases/genética , Microbiologia do Solo , Solanum/microbiologia , Agricultura , Calendula/metabolismo , Clima Desértico , Ecossistema , Egito , Variação Genética/genética , Hibridização in Situ Fluorescente , Matricaria/metabolismo , Microbiota/genética , Microbiota/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Solo/química , Solanum/metabolismo
2.
Front Microbiol ; 5: 64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600444

RESUMO

Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14) from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18) already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as to influence the plant metabolome.

3.
FEMS Microbiol Lett ; 342(2): 168-78, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23350560

RESUMO

Plant protection via disease-suppressive bacteria in desert farming requires specific biological control agents (BCAs) adapted to the unique arid conditions. We performed an ecological study of below-ground communities in desert farm soil and untreated desert soil, and based on these findings, selected antagonists were hierarchically evaluated. In contrast to the highly specific 16S rRNA fingerprints of bacterial communities in soil and cultivated medicinal plants, internal transcribed spacer profiles of fungal communities were less discriminative and mainly characterised by potential pathogens. Therefore, we focused on in vitro bacterial antagonists against pathogenic fungi. Based on the antifungal potential and genomic diversity, 45 unique strains were selected and characterised in detail. Bacillus/Paenibacillus were most frequently identified from agricultural soil, but antagonists from the surrounding desert soil mainly belonged to Streptomyces. All strains produced antibiotics against the nematode Meloidogyne incognita, and one-third showed additional activity against the bacterial pathogen Ralstonia solanacearum. Altogether, 13 broad-spectrum antagonists with antibacterial, antifungal and nematicidal activity were found. They belong to seven different bacterial species of the genera Bacillus and Streptomyces. These Gram-positive, spore-forming bacteria are promising drought-resistant BCAs and a potential source for antibiotics. Their rhizosphere competence was shown by fluorescence in situ hybridisation combined with laser scanning microscopy.


Assuntos
Antibiose , Bacillus/isolamento & purificação , Fungos/crescimento & desenvolvimento , Microbiologia do Solo , Streptomyces/isolamento & purificação , Animais , Bacillus/classificação , Bacillus/genética , Bacillus/fisiologia , Biota , Clima Desértico , Egito , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/genética , Dados de Sequência Molecular , Nematoides/efeitos dos fármacos , Plantas Medicinais/microbiologia , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/genética , Streptomyces/fisiologia
4.
Front Microbiol ; 4: 400, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24391634

RESUMO

Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

5.
PLoS One ; 6(9): e24452, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912695

RESUMO

BACKGROUND: To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. METHODOLOGY/PRINCIPAL FINDINGS: We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt). Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90), and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37%) than in the desert (11%). Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%); disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. CONCLUSIONS/SIGNIFICANCE: After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural soil showed a higher diversity and a better ecosystem function for plant health but a loss of extremophilic bacteria. Interestingly, we detected that indigenous desert microorganisms promoted plant health in desert agro-ecosystems.


Assuntos
Bactérias/classificação , Biodiversidade , Clima Desértico , Secas , Agricultura Orgânica/métodos , Plantas/microbiologia , Microbiologia do Solo , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Resistência à Doença , Fungos Mitospóricos/patogenicidade , Dados de Sequência Molecular , Análise Multivariada , Plantas/imunologia , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...